بتـــــاريخ : 6/3/2008 10:10:17 AM
الفــــــــئة
  • الحـــــــــــاسب
  • التعليقات المشاهدات التقييمات
    0 1700 0


    انا بقى شاشتي Lcd

    الناقل : elmasry | العمر :42 | الكاتب الأصلى : الورد الجوري | المصدر : www.ebnmasr.net

    كلمات مفتاحية  :
    حاسب

    السلام عليكم و رحمة الله و بركاته


    يارب يكون الجميع بخير


    اعتدنا لما نتكلم مع اصدقاءنا و نجيب سيرة الكمبيوترات


    نسال عن الانواع اللي عند كل واحد فينا


    و عادة لما بنسأل عن الشاشات


    تلاقي حد طالع يقول


    " انا بقى شاشتي LCD"


    و انا كمان شاشتي كده

     

    بس ياترى يعني ايه ؟؟

    هقولكم

    دي يعني : شاشات الكريستالات السائله


    او يعني شاشات البلازما



    " كسبنا ايه ؟؟ .. فسرت الماء بعد الجهد بالماء "


    عموما تعالو نشوف الموضوع ده و انتو تعرفوا


    اصبحت شاشات الكريستال السائل LCD أكبر وأسرع، وأكثر سطوعاً مما كانت سابقاً. ونلقي في هذه الجولة نظرة عميقة على بنية وطريقة عمل هذه الشاشات، وعلى أحدث الطرق التي اتبعها المهندسون، لتطويرها.

    يشيع استخدام شاشات الكريستال السائل lCDفي كمبيوترات المفكرات notebooks ، والمساعدات الشخصية الرقمية PDA ، إلا أنها تغزو الآن، أسواق الكمبيوترات المكتبية desktops ، أيضاً. وتَعِد هذه الشاشات المسطحة، بوضوح رائع عند الكثافات النقطية العالية، كما أنها متوفرة الآن، بقياسات تصل إلى 15 بوصة.

    يمتاز مرقاب LCD بفوائد تشجّع على استخدامه، وعيوب تحد من انتشاره. وتكمن أولى فوائده، في حجمه الصغير، مقارنة بشاشات CRT التقليدية، ذات الحجم الكبير والوزن الثقيل، بسبب ضرورة وضع أنبوب الأشعة المهبطية ضمنها، أما مراقيب LCD، فلا تزيد سماكتها على بضع بوصات، وهي بالتالي أخف وزناً بكثير من شاشات CRT، وتستهلك طاقة كهربائية أقل بكثير من استهلاك شاشات CRT.

    وبالمقابل، يزيد ثمن شاشات LCD كثيراً على ثمن شاشات CRT، في الوقت الراهن. ويكمن عيبها الآخر في أن زاوية الرؤية فيها محدود. ولتأمين زاوية رؤيا مثالية لشاشات LCD، يجب النظر إليها بشكل عمودي على سطحها، وكلما انحرفنا عن هذا الوضع، باتجاه طرف الشاشة، تزداد صعوبة قرائتها، بالمقارنة مع شاشات CRT. كما أن الكثافة النقطية العظمى لشاشات LCD لا تتجاوز 1024x768 بيكسل، وهذا غير كاف، في بعض التطبيقات.

    ماهي البلازما؟

    نعلم ان شاشات الكاثود في التلفزيون الملون تعمل من خلال تقسيم الشاشة إلى مربعات صغيزة تسمى البكسل pixelوهو عنصر الصورة ويكون هناك ثلاثة بيكسلات لكل من الالوان الاساسية وهي الأحمر والأخضر والأزرق وتكون موزعة على مساحة الشاشة وعند اصطدام الالكترونات بأي من هذه البكسلات يعطي ضوء بلون البكسل وهذا يكون الصورة

    تعمل شاشات البلازما بنفس الآلية حيث يوجد يتكون كل بكسل من ثلاث ألوان (الأحمر والأخضر والأزرق) ولكن لا يوجد الشعاع الالكتروني ولا يوجد الشاشة الفوسفورية انما يتم توليد هذه الالوان الثلاثة في كل بكسل من خلال fluorescent lights ضوء فلورسنت ومن خلال التحكم ودرجة شدة كل ضوء فلورسنت ينتج اللون المطلوب وهذا يحدث على كل بكسلات الشاشة وعندها تتكون الصورة الكاملة.
    يتم توليد ضوء الفلورسنت من خلال البلازما، والبلازما هي غاز متأين حيث تكون ذرات الغاز منزوعة منها الكتروناتها ويصبح الغاز مكون من ايونات موجبة الشحنة والكترونات سالبة الشحنة. وبالطبع هذا الغاز (البلازما) يحدث في ظروف خاصة مثل أن يكون الغاز داخل مجال كهربي كبير ناتج عن فرق جهد عالي مما يؤدي إلى انجذاب الالكترونات إلى الطرف الموجب والأيونات إلى الطرف السالب فتصطدم الالكترونات مع الايونات مما يؤدي الى أثارة ذرات الغاز في البلازما وينتج عن هذه الاثارة تحرر طاقة في صورة فوتونات ضوئية كما هو الحال في المصابيح الفلوريسنت التي نستخدمها للاضاءة.
    يتم في شاشات البلازما استخدام غاز مكون من ذرات النيون وذرات الزينون وعند اثارة هذا الغاز بالطريقة سابقة الذكر نحصل على فوتونات في مدى الترددات الفوق بنفسجية التي لا ترى بالعين المجردة ولكن هذه الفوتونات تستخدم للاثارة للحصول على فوتونات بترددات في المدى المرئي.

    منابع الضوء وأنماط الرؤية

    لا تستطيع شاشات LCD إصدار الضوء، كما هو الحال في شاشات CRT. ويوجد ثلاثة أنماط رؤية viewing modes لهذه الشاشات . في نمط الرؤية الانعكاسي reflective ، يدخل ضوء الشمس، أو ضوء الغرفة، إلى شاشة LCD من الأمام، ويصطدم بطبقة عاكسة للضوء reflector، وأخرى مستقطبة للضوء polarizer، متوضعتين في الجزء الخلفي من الشاشة، ثم ينعكس هذا الضوء باتجاه المستخدم.

    تستخدم الساعات الرقمية، والآلات الحاسبة، وبعض الأجهزة الإلكترونية الأخرى، الشاشات الانعكاسية. لكن، لا تكون ظروف الإضاءة الخارجية جيدة دائماً، فطوّرت لذلك، منابع أخرى للضوء، وأنماط أخرى للرؤية. فبعض شاشات LCD جانبية الإنارة edgelit، حيث يوضع منبع ضوئي في طرف شاشة العرض، لكن معظمها خلفي الإنارة backlit، فيكون المنبع الضوئي خلف الشاشة. ويتكون المنبع الضوئي، عادة، من أحد الأنواع الثلاثة التالية: التوهج الإلكتروني electroluminescent، أو ثنائي الباعث الضوئي light-emitting diode, LED، أو فلوريسانت المهبط البارد cold-cathode fluorescent, CCF. وطريقة التوهج الإلكتروني من أكثر هذه الطرق انتشاراً، فيما تمتاز طريقة CCF بأنها تعطي أفضل إنارة جانبية.

    يوجد بالإضافة إلى نمط الرؤية الانعكاسي، نمطان آخران، هما: النمط المنقول transmissive والنمط المنعكس المنقول transflective ويمتاز النمط المنقول بأنه لا يستخدم الضوء المنعكس، بل يعتمد تماماً، على الإضاءة الجانبية، أو الإضاءة الخلفية. أما النمط المنعكس المنقول transflective فيستخدم الضوء المنعكس عند توفره، والإضاءة الخلفية عند الحاجة. وتعتبر معظم شاشات المفكرات من النوع الذي يعتمد على النمط المنقول transmissive فيما تستخدم أجهزة PDA، مثل جهاز Palm III النمط المنعكس المنقول transflective

    بنية شاشات LCD

    تقع جزيئات الكريستال السائل، بين الحالة السائلة والحالة الصلبة للمادة. ويمكن لمادة الكريستال السائل أن تنساب مثل السوائل، لكن الجزيئات المستقلة قضيبية الشكل، يمكن أن تُعطى اتجاهاً معيناً. وتتوضع جزيئات الكريستال السائل بشكل طبيعي، في تشكيلة متوازية نسبياً، مثل مجموعة متسلسلة من الأوتاد المستخدمة في الأسوار. وتسمّى هذه الوضعية بالطور الشريطي nematic، وتسمّى جزيئات الكريستال السائل المستخدمة في شاشة العرض، الكريستالات السائلة الشريطية nematic liquid cristals. وتكمن الخطوة الأولى في تقنية LCD، في الاستفادة من هذه الخاصية، عن طريق التحكم بدقة، بالتراصف المتوازي لهذه الجزيئات.

    بنية شاشة LCD المكونة من عدة طبقات. تقع طبقة جزيئات الكريستال السائل، بين طبقتي تراصف alignment layers، تحتويان على أخاديد صغيرة، تساعد على تراصف الجزيئات في نموذج معين. وتكون أخاديد الطبقة الأولى متعامدة مع أخاديد الطبقة الأخرى، وتبقى طبقات التراصف بعيدة عن بعضها بنسبة ثابتة.

    تكون الأخاديد في طبقات التراصف عمودية على بعضها البعض، وتتراصف نهايات أشرطة الكريستال السائل على طول الأخاديد، فتصبح أشرطة الكريستال السائل ملتوية. وتساوي زاوية الالتواء، في معظم شاشات الكريستال السائل، التي تسمّى شاشات الشريط الملتوي twisted nematic, TN ، 90 درجة. أما الشاشات المتطورة، التي تسمّى شاشات الشريط شديد الالتواء supertwist nematic ، أو شاشات الشريط مضاعف الالتواء double supertwist nematic ، أو حتى شاشات الشريط ثلاثي الالتواء triple supertwist nematic، فإنها تدير الكريستال السائل، بزاوية تصل إلى 270 درجة. وكلما كبرت نسبة التواء الشريط الكريستالي، تتحسن نسبة تباين الضوء على الشاشة.

    ، تتألف كل منهما من مرشح يسمح بمرور الضوء الموجه باتجاه معين. وتتوضع هذه الطبقات بحيث تكون خطوط الاستقطاب متعامدة مع بعضها البعض، ومتوافقة مع طبقات التراصف المماثلة لها. وإذا وضعنا طبقتي استقطاب أمام بعضهما في هذه الطريقة، فإن الضوء سوف يتمكن من المرور عبر الطبقة الأولى، وسيمنع من المرور عبر الطبقة الثانية، لأن لمرشحي الضوء اتجاهين متعامدين. لكن الضوء في شاشات يكون الضوء عشوائي الاتجاه، عادة، إلا أنه من الممكن إجباره على اتخاذ اتجاه معين، وهذا الاتجاه في حالتنا، هو اتجاه التواء جزيئات الكريستال السائل. يمر الضوء في شاشات LCD أيضاً، عبر طبقتي استقطاب polarizinglayersLCD يتبع اتجاه التواء جزيئات الكريستال السائل، ليتوافق مع اتجاه مرشح الاستقطاب الثاني، ويتمكّن من المرور.

    تبقى أشرطة الكريستال السائل ملتوية الشكل، إلى أن يتم تطبيق التيار الكهربائي عليها، فتستقيم بحيث تتراصف نهايتها الأولى مع النهاية الأخرى، وتصبح عمودية على مستوى الشاشة. وتزود طبقة الإلكترودات المناطق المختارة بالتيار الكهربائي. وتبدو المناطق التي يطبق عليها التيار داكنة اللون، لأن الضوء المرشح من خلال طبقة الاستقطاب الأولى، يتبع جزيئات الكريستال السائل المستقيمة، بينما تمنعه طبقة الاستقطاب الثانية من المرور. أما المناطق التي لا يطبّق عليها التيار، فتبدو مضاءة، لأن الضوء يتبع جزيئات LC الملتوية، ويمكنه أن يمر عبر طبقة الاستقطاب الثانية. ونحصل في النتيجة، على نظام يمنع مرور الضوء في بعض الأماكن، ويسمح بمروره في أماكن أخرى، مشكلاً الصورة المطلوبة.

    ولإنشاء صور ملونة، يتم تطبيق مرشحات الألوان فوق خلايا LCD المستقلة. وترتب هذه المرشحات، عادة، في خطوط طولية، من ألوان الأحمر والأخضر والأزرق، كما تستخدم نماذج أخرى من الألوان. ولإنشاء بيكسل أبيض اللون، تقوم ثلاث خلايا LCD متجاورة ببث الضوء في آن. ويمكن إنشاء ظلال الألوان بعدة طرق، بما في ذلك خفض التوتر الكهربائي المطبق على خلية LCD، لخفض كمية الضوء المرسلة، أو عن طريق إضاءة وإطفاء الشاشة بشكل متكرر وسريع، أو بتوظيف تقنية الاهتزاز الموضعي spatial dithering ، وهي استخدام بيكسلات متجاورة، لتأمين كميات متفاوتة من ألوان الأحمر والأخضر والأزرق.

    المصفوفة غير الفعّالة والمصفوفة الفعّالة

    كانت شاشات LCD، تقسم إلى نوعين مختلفين: يعتمد النوع الأول على تقنية المصفوفة غير الفعّالة passive-matrix ، ويعتمد النوع الثاني على تقنية المصفوفة الفعّالة active-matrix . لكن التصنيف الحديث لشاشات LCD، يقسمها إلى شاشات المسح الثنائي dual-scan ، وشاشات TFT. ولا يختلف التصنيف الحديث لشاشات LCD كثيراً، عن تصنيفها القديم.

    تعتمد شاشات المصفوفة غير الفعالة passive-matrix ، على شبكة من النواقل العمودية والأفقية، تحتوي على خلايا LCD مستقلة، متوضعة عند تقاطعات هذه النواقل. وترسل دارات التحكم التيار الكهربائي عبر النواقل الأفقية، بشكل متسلسل. ولإطفاء بيكسل معين، يتم فتح الاتصال مع الناقل العمودي المعني بهذا البيكسل، مما يسمح للتيار بالمرور عبر الخلية. وتستهلك هذه العنونة التسلسلية وقتاً طويلاً، نسبياً، وتعتبر إحدى العوامل التي تسبب بطء زمن استجابة شاشات المصفوفة غير الفعّالة.

    أما المسح الثنائي dual-scan ، فهي نسخة محسنة من تقنية المصفوفة غير الفعّالة، تنعش الشاشة بسرعة أكبر، عن طريق تقسيمها إلى نصفين. ويتم إنعاش كل نصف بشكل مستقل عن النصف الآخر، لكن الإنعاش يتم في وقت واحد. أما التقنيات الأخرى، التي تعتمد على تقنية المصفوفة غير الفعّالة، فتتضمن تقنية CSTNcolor supertwist nematic ، وتقنية HPA High-Performance Addressing ، وكلاهما مصممتان لإعطاء معدلات أداء أعلى، وتباين أفضل.

    كان التركيز الرئيسي، في السنوات القليلة الماضية، على تقنية المصفوفة الفعّالة، المعروفة أيضاً، باسم شاشات "شرائح الترانزستورات الرقيقة" TFT thin-film transistor . تقوم هذه التقنية بوضع ترانزيستور واحد على الأقل، عند موقع كل بيكسل، وتتحكم الترانزيستورات بكل بيكسل، بشكل مستقل. وتحتاج هذه التقنية، لذلك، إلى كمية أصغر من التيار الكهربائي لتغذية البيكسلات، وينخفض زمن إضاءة وإطفاء البيكسلات، فنحصل على استجابة أسرع، وظلال أقل، أو شبه معدومة.

    تفوق شاشات TFT شاشات المصفوفة غير الفعّالة، سرعة ووضوحاً، لكنها، أيضاً، أكثر تكلفة، من حيث الإنتاج. ومن السهل معرفة السبب في ذلك، إذ تحتاج الكثافة النقطية 800x600 إلى أكثر من 1.4 مليون ترانزستور 800 × 600 × 3، حيث يمثل العدد 3 الألوان الأساسية الثلاثة ، بينما تتطلب الكثافة النقطية 1024x768 أكثر من 2.3 مليون ترانزستور. ولا يجب ترك المجال لحدوث أي خطأ، لأنه في حال تعطل أحد الترانزستورات، فإن البيكسل المعني سيبقى عاطلاً عن العمل بشكل دائم، ويبقى ذلك الموقع من الشاشة دائم الإضاءة. ولذلك، تضع بعض الشركات الصانعة ترانزستورات احتياطية عند كل خلية، لكن هذا يزيد من تكاليف التصنيع بشكل كبير.

    وتسبب الترانزستورات مشكلة أخرى، هي انخفاض نسبة الضوء المنقول. ففي تصميم شاشات LCD، يتم امتصاص معظم الضوء من قبل الطبقات المختلفة، بما في ذلك طبقات الاستقطاب، وطبقات مرشحات الألوان، وطبقة الكريستال السائل ذاتها. وفي شاشات المصفوفة الفعّالة، يحتل الترانزيستور جزءاً من المساحة الواقعة في أعلى خلية الكريستال السائل، مما يحجب نسبة أكبر من الضوء. ويسمّى ذلك الجزء من خلية المصفوفة الفعّالة، الذي بقي مفتوحاً لمرور الضوء، نسبة فتحة مرور الضوء aperture ratio ، التي يعمل مهندسو LCD باستمرار، على تكبيرها قدر الإمكان. ومع ازدياد الكثافة النقطية، يزداد عدد ترانزستورات الشاشة وتزداد نسبة المساحة المستخدمة بين الخلايا ، مما يحجب المزيد من الضوء.

    ونتيجة لما سبق، فإن معظم شاشات LCD تمتص 95 بالمائة، أو أكثر، من الضوء الذي تتلقاه، حتى عندما تعرض صورة بيضاء اللون على الشاشة بأكملها. ويلعب هذا دوراً مهماً في تطبيقات الأجهزة المحمولة، مثل المفكرات، حيث أن كمية الضوء المطلوبة من قبل الإضاءة الخلفية، تؤثر على وزن وعمر البطاريات.

    ابتكرت الشركات الصانعة عدة حلول لتحسين أداء LCD. وترتب تقنية Inplane switching شاشات LCD أفقياً، بدلاً من الترتيب العمودي، مما يحسّن زاوية الرؤية الأفقية للشاشة، كثيراً. وتعمل الشركات الصانعة على تصميم شاشات LCD أنحف، يمكنها أن تتجاوب بشكل أسرع مع تغييرات التيار الكهربائي، مما يؤمن للشاشة زمن استجابة كافياً لعرض تطبيقات الصور المتحركة، مثل الأفلام السينمائية.

    تتابع تقنيات LCD الأخرى طريقها نحو التطور. وتقدّم تقنية الكريستالات الكهربائية الحديدية ferroelectric crystals ، التي تعتبر في حالة استقطاب دائم، معدلات استجابة أعلى، وزاوية رؤية أكبر، وتطور بعض الشركات أنظمة تتمتع بمزايا المصفوفة غير الفعّالة، ومزايا المصفوفة الفعّالة. وقد أعلنت شركة IBM حديثاً، عن تطوير شاشة LCD بكثافة نقطية 200 بيكسل في البوصة الواحدة، والتي لا تختلف بالنسبة للعين البشرية، عن دقة صفحة مطبوعة.

    توجد أيضاً شاشات LCD ثنائية الاستقرار bi-stable قيد التطوير، تبقى فيها الخلايا إما مضاءة أو غير مضاءة، بعد انقطاع التغذية عنها. وقد يكون لهذه التقنية تأثير كبير على الأجهزة المحمولة، لأن هذه الشاشات ستحتاج إلى طاقة أقل كثيراً، للاحتفاظ بالصور.

    ينشئ العديد من الشركات الصانعة، شاشات LCD نحيفة، مباشرة على رقاقات السيليكون، وتعد هذه التقنية بخفض التكلفة كثيراً، مقارنة مع تكاليف شاشات الرؤية المباشرة LCD، المستخدمة في المفكرات، والأجهزة المكتبية، ويمكن استخدامها لأجهزة الإسقاط المحمولة portable projectors ، وفي المراقيب المكتبية، خفيفة الوزن وصغيرة الحجم، التي تعتمد على الإضاءة الخلفية.

    كيف تعمل شاشات LCD

    يظهر الضوء من خلف الشاشة، إما عن طريق طبقة عاكسة في النمط الانعكاسي ، أو من منبع ضوئي مدمج في النمط المنقول . وتقوم طبقة الاستقطاب polarizing layer بترشيح الضوء، الذي يمر من خلال طبقة زجاجية، وطبقة إلكترودات شفافة، وطبقة تراصف، ومن ثَمّ من خلال الكريستالات السائلة ذاتها. وتأتي بعدها طبقات متممة، مؤلفة من طبقة إلكترودات شفافة، وطبقة تراصف، ثم مرشحات الألوان، وشريحة زجاجية. ويتألف كل بيكسل في الشاشة الملونة، من جزء أحمر، وآخر أخضر، وثالث أزرق، بنسب تحدّدها التعليمات التي تتحكم بالكريستالات السائلة عند كل نقطة، على شبكة الإلكترودات الشفافة. وإذا لم تكن الكريستالات السائلة مشحونة عند نقطة معينة، فإن الضوء يمر عبر طبقة الاستقطاب الأمامية. وإذا كانت الكريستالات السائلة مشحونة كهربائياً، فإنها تمنع مرور الضوء.

    يتم ترشيح الضوء عبر طبقة استقطاب. وتنشئ طبقتا التراصف أشرطة من الكريستالات السائلة قضيبية الشكل، والتي تتراصف بشكل طبيعي جنباً إلى جنب، مسببة إلتواء هذه الأشرطة بزاوية قدرها 90 درجة. ويلتوي الضوء على طول أشرطة الكريستال السائل، ويمر عبر طبقة استقطاب ثانية، متوضعة بانزياح قدره 90 درجة عن طبقة الاستقطاب الأولى.

    إذا تلقّت أشرطة الكريستال السائل، الشحنة الكهربائية من طبقة الإلكترودات، فإن الجزيئات تتراصف بحيث تتوضع النهاية الأولى مع النهاية الأخرى، مما يسمح للضوء بالمرور بشكل مباشر، بدون التواء. وفي تلك الحالة، يمنع مرشح الاستقطاب الثاني مرور الضوء.

    نظرة أعمق في فكرة عمل شاشات البلازما


    تتوزع ذرات النيون وذرات الزينون على ألاف الخلايا المحصورة بين لوحين من الزجاج المنطقة رقم (2) و (6) الموضحة في الشكل. يتصل باللوح الزجاجي الأمامي (2) الكترود يسمى الكترود العرض Display Electrode ويتصل باللوح الزجاجي الخلفي (6) الكترود العنونة Address Electrode. وبالتالي تصبح كل خلية ضوئية (تحتوي على ذرات النيون والوينون) محاطة بالكترود العرض من الامام والكترود العنونة من الخلف.


     



     

    تحيط مادة عازلة غير موصلة للكهرباءdielectric material الكترود العرض ومغطاة بطبقة واقية من اكسيد الماغنيسيوم لتكون بين الخلية الضوئية ولوح الزجاج الأمامي.
    كما هو موضح في الشكل المقابل اللون الأصفر للالكترود الأمامي والخلفي والخلايا ضوئية الموضحة باللون الأزرق ويوجد بجانبها خلية ضوئية خضراء وأخرى حمراء، كذلك موضح الطبقة الواقية الشفافة من MgO.


     



     

    بنظرة شمولية اكثر نلاحظ في الشكل التالي كيف تترتب الخلايا الضوئية على مساحة الشاشة وتقسم الشاشة الى وحدات صغيرة تسمى عناصر الصورة وتدعى بكسل وكل بكسل عبارة عن ثلاثة خلايا ضوئية للألوان الأحمر والأخضر والأزرق. ونلاحظ أيضا اشرطة الالكترود (اللون الاصفر) بحيث تكون مرتبة في صفوف متوازية ويكون الكترود العنونة ممدد على طول الخلايا الضوئية ذات اللون الواحد ويكون الكترود العرض ممددا على طول البكسل.وهذا يكون على طول وعرض الشاشة مما يشكل في النهاية شبكة من الالكترود

     


    وعملية تأين الغاز في داخل اية خلية ضوئية يتحكم فيه كمبيوتر خاص للشاشة حيث يتحكم في توجيه الشحنة الكهربية الى الالكترودين المتعامدين فيحدث التفريغ الكهربي في تلك الخلية وتتكرر هذه العملية الاف المرات في جزء من الثانية.
    عندما يشحن الالكترودين المتعامدين (المتقاطعين) يصبح هناك فرق جهد بينهما فيمر تيار كهربي في تلك الخلية الضوئية التي تحتوي غاز النيون والزينون فيتأين الغاز ويتحول إلى بلازما وتنطلق اشعة كهرومغناطيسية (فوتونات) فوق بنفسجية.
    تعمل الاشعة الفوق بنفسجية المنطلقة من البلازما على اثارة المادة الفسفورية المغلفة للخلية الضوئية حيث تمتص الكترونات ذرات الفسفور فوتون الاشعة فوق البنفسجية وينتقل الالكترون الى مستويات طاقة أعلى وعند عودة الالكترون المثار الى مستوى طاقته الأصلي يعطي ضوء في المدى المرئي.
    كما ذكرنا سابقا فإن كل بكسل مكون من ثلاث خلايا ضوئية وكل خلية ضوئية مغلفة من الداخل بمادة فسفورية تعطي ضوء أحمر والثانية تعطي ضوء أخضر والثالثة تعطي الضوء الأزرق (أي أن هناك ثلاث انواع مختلفة من الفسفور لكل خلية ليعطي الألوان الأساسة).
    وبالتحكم بشدة تيار النبضات الكهربية الموجهة بواسطة الكمبيوتر إلى الخلايا الضوئية المختلفة يمكن الحصول على خليط من الألوان الاساسية لتعطي في المحصلة كل الالوان الممكنة. وحيث أن التحكم يصل إلى كل بكسل فإن الصورة الناتجة من الشاشة ذات دقة عالية مهما كانت الزاوية التي ننظر إليها إلى الشاشة.

     


     
    كلمات مفتاحية  :
    حاسب

    تعليقات الزوار ()